import { Point } from './point'; import { Geometry } from './geometry'; import { Rectangle } from './rectangle'; export class Line extends Geometry { get center() { return new Point((this.start.x + this.end.x) / 2, (this.start.y + this.end.y) / 2); } constructor(x1, y1, x2, y2) { super(); if (typeof x1 === 'number' && typeof y1 === 'number') { this.start = new Point(x1, y1); this.end = new Point(x2, y2); } else { this.start = Point.create(x1); this.end = Point.create(y1); } } getCenter() { return this.center; } /** * Rounds the line to the given `precision`. */ round(precision = 0) { this.start.round(precision); this.end.round(precision); return this; } translate(tx, ty) { if (typeof tx === 'number') { this.start.translate(tx, ty); this.end.translate(tx, ty); } else { this.start.translate(tx); this.end.translate(tx); } return this; } /** * Rotate the line by `angle` around `origin`. */ rotate(angle, origin) { this.start.rotate(angle, origin); this.end.rotate(angle, origin); return this; } /** * Scale the line by `sx` and `sy` about the given `origin`. If origin is not * specified, the line is scaled around `0,0`. */ scale(sx, sy, origin) { this.start.scale(sx, sy, origin); this.end.scale(sx, sy, origin); return this; } /** * Returns the length of the line. */ length() { return Math.sqrt(this.squaredLength()); } /** * Useful for distance comparisons in which real length is not necessary * (saves one `Math.sqrt()` operation). */ squaredLength() { const dx = this.start.x - this.end.x; const dy = this.start.y - this.end.y; return dx * dx + dy * dy; } /** * Scale the line so that it has the requested length. The start point of * the line is preserved. */ setLength(length) { const total = this.length(); if (!total) { return this; } const scale = length / total; return this.scale(scale, scale, this.start); } parallel(distance) { const line = this.clone(); if (!line.isDifferentiable()) { return line; } const { start, end } = line; const eRef = start.clone().rotate(270, end); const sRef = end.clone().rotate(90, start); start.move(sRef, distance); end.move(eRef, distance); return line; } /** * Returns the vector of the line with length equal to length of the line. */ vector() { return new Point(this.end.x - this.start.x, this.end.y - this.start.y); } /** * Returns the angle of incline of the line. * * The function returns `NaN` if the start and end endpoints of the line * both lie at the same coordinates(it is impossible to determine the angle * of incline of a line that appears to be a point). The * `line.isDifferentiable()` function may be used in advance to determine * whether the angle of incline can be computed for a given line. */ angle() { const ref = new Point(this.start.x + 1, this.start.y); return this.start.angleBetween(this.end, ref); } /** * Returns a rectangle that is the bounding box of the line. */ bbox() { const left = Math.min(this.start.x, this.end.x); const top = Math.min(this.start.y, this.end.y); const right = Math.max(this.start.x, this.end.x); const bottom = Math.max(this.start.y, this.end.y); return new Rectangle(left, top, right - left, bottom - top); } /** * Returns the bearing (cardinal direction) of the line. * * The return value is one of the following strings: * 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW' and 'N'. * * The function returns 'N' if the two endpoints of the line are coincident. */ bearing() { return this.start.bearing(this.end); } /** * Returns the point on the line that lies closest to point `p`. */ closestPoint(p) { return this.pointAt(this.closestPointNormalizedLength(p)); } /** * Returns the length of the line up to the point that lies closest to point `p`. */ closestPointLength(p) { return this.closestPointNormalizedLength(p) * this.length(); } /** * Returns a line that is tangent to the line at the point that lies closest * to point `p`. */ closestPointTangent(p) { return this.tangentAt(this.closestPointNormalizedLength(p)); } /** * Returns the normalized length (distance from the start of the line / total * line length) of the line up to the point that lies closest to point. */ closestPointNormalizedLength(p) { const product = this.vector().dot(new Line(this.start, p).vector()); const normalized = Math.min(1, Math.max(0, product / this.squaredLength())); // normalized returns `NaN` if this line has zero length if (Number.isNaN(normalized)) { return 0; } return normalized; } /** * Returns a point on the line that lies `rate` (normalized length) away from * the beginning of the line. */ pointAt(ratio) { const start = this.start; const end = this.end; if (ratio <= 0) { return start.clone(); } if (ratio >= 1) { return end.clone(); } return start.lerp(end, ratio); } /** * Returns a point on the line that lies length away from the beginning of * the line. */ pointAtLength(length) { const start = this.start; const end = this.end; let fromStart = true; if (length < 0) { fromStart = false; // start calculation from end point length = -length; // eslint-disable-line } const total = this.length(); if (length >= total) { return fromStart ? end.clone() : start.clone(); } const rate = (fromStart ? length : total - length) / total; return this.pointAt(rate); } /** * Divides the line into two lines at the point that lies `rate` (normalized * length) away from the beginning of the line. */ divideAt(ratio) { const dividerPoint = this.pointAt(ratio); return [ new Line(this.start, dividerPoint), new Line(dividerPoint, this.end), ]; } /** * Divides the line into two lines at the point that lies length away from * the beginning of the line. */ divideAtLength(length) { const dividerPoint = this.pointAtLength(length); return [ new Line(this.start, dividerPoint), new Line(dividerPoint, this.end), ]; } /** * Returns `true` if the point `p` lies on the line. Return `false` otherwise. */ containsPoint(p) { const start = this.start; const end = this.end; // cross product of 0 indicates that this line and // the vector to `p` are collinear. if (start.cross(p, end) !== 0) { return false; } const length = this.length(); if (new Line(start, p).length() > length) { return false; } if (new Line(p, end).length() > length) { return false; } return true; } intersect(shape, options) { const ret = shape.intersectsWithLine(this, options); if (ret) { return Array.isArray(ret) ? ret : [ret]; } return null; } /** * Returns the intersection point of the line with another line. Returns * `null` if no intersection exists. */ intersectsWithLine(line) { const pt1Dir = new Point(this.end.x - this.start.x, this.end.y - this.start.y); const pt2Dir = new Point(line.end.x - line.start.x, line.end.y - line.start.y); const det = pt1Dir.x * pt2Dir.y - pt1Dir.y * pt2Dir.x; const deltaPt = new Point(line.start.x - this.start.x, line.start.y - this.start.y); const alpha = deltaPt.x * pt2Dir.y - deltaPt.y * pt2Dir.x; const beta = deltaPt.x * pt1Dir.y - deltaPt.y * pt1Dir.x; if (det === 0 || alpha * det < 0 || beta * det < 0) { return null; } if (det > 0) { if (alpha > det || beta > det) { return null; } } else if (alpha < det || beta < det) { return null; } return new Point(this.start.x + (alpha * pt1Dir.x) / det, this.start.y + (alpha * pt1Dir.y) / det); } /** * Returns `true` if a tangent line can be found for the line. * * Tangents cannot be found if both of the line endpoints are coincident * (the line appears to be a point). */ isDifferentiable() { return !this.start.equals(this.end); } /** * Returns the perpendicular distance between the line and point. The * distance is positive if the point lies to the right of the line, negative * if the point lies to the left of the line, and `0` if the point lies on * the line. */ pointOffset(p) { const ref = Point.clone(p); const start = this.start; const end = this.end; const determinant = (end.x - start.x) * (ref.y - start.y) - (end.y - start.y) * (ref.x - start.x); return determinant / this.length(); } pointSquaredDistance(x, y) { const p = Point.create(x, y); return this.closestPoint(p).squaredDistance(p); } pointDistance(x, y) { const p = Point.create(x, y); return this.closestPoint(p).distance(p); } /** * Returns a line tangent to the line at point that lies `rate` (normalized * length) away from the beginning of the line. */ tangentAt(ratio) { if (!this.isDifferentiable()) { return null; } const start = this.start; const end = this.end; const tangentStart = this.pointAt(ratio); const tangentLine = new Line(start, end); tangentLine.translate(tangentStart.x - start.x, tangentStart.y - start.y); return tangentLine; } /** * Returns a line tangent to the line at point that lies `length` away from * the beginning of the line. */ tangentAtLength(length) { if (!this.isDifferentiable()) { return null; } const start = this.start; const end = this.end; const tangentStart = this.pointAtLength(length); const tangentLine = new Line(start, end); tangentLine.translate(tangentStart.x - start.x, tangentStart.y - start.y); return tangentLine; } relativeCcw(x, y) { const ref = Point.create(x, y); let dx1 = ref.x - this.start.x; let dy1 = ref.y - this.start.y; const dx2 = this.end.x - this.start.x; const dy2 = this.end.y - this.start.y; let ccw = dx1 * dy2 - dy1 * dx2; if (ccw === 0) { ccw = dx1 * dx2 + dy1 * dy2; if (ccw > 0.0) { dx1 -= dx2; dy1 -= dy2; ccw = dx1 * dx2 + dy1 * dy2; if (ccw < 0.0) { ccw = 0.0; } } } return ccw < 0.0 ? -1 : ccw > 0.0 ? 1 : 0; } /** * Return `true` if the line equals the other line. */ equals(l) { return (l != null && this.start.x === l.start.x && this.start.y === l.start.y && this.end.x === l.end.x && this.end.y === l.end.y); } /** * Returns another line which is a clone of the line. */ clone() { return new Line(this.start, this.end); } toJSON() { return { start: this.start.toJSON(), end: this.end.toJSON() }; } serialize() { return [this.start.serialize(), this.end.serialize()].join(' '); } } (function (Line) { function isLine(instance) { return instance != null && instance instanceof Line; } Line.isLine = isLine; })(Line || (Line = {})); //# sourceMappingURL=line.js.map